If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2-10w=24
We move all terms to the left:
4w^2-10w-(24)=0
a = 4; b = -10; c = -24;
Δ = b2-4ac
Δ = -102-4·4·(-24)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-22}{2*4}=\frac{-12}{8} =-1+1/2 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+22}{2*4}=\frac{32}{8} =4 $
| 16-3x+10=5 | | y+5×=9;×=-2,0,3 | | 4-x+3=3x+3-4-4x | | 4x+1=x-2+3x | | x°+(x+64)°=90 | | (6x+13)°+(5x-4)°+(7x-8)°=180 | | X*6y=1 | | 15x+15-8x=29 | | /2n-6=-8n+14 | | 429=8n-21 | | 10+12x=12x-4 | | 9x²=360 | | 1/8x^2+x+2=0 | | x2-16x+74=1 | | x2+12x-10=0 | | 44-n=56 | | 5(5=1)=25t-7 | | (3x÷5)-11=4 | | 25=25t-12 | | |6r+10|=34 | | 2x+27+x÷2=180 | | (x+10)°+(4x-35)°=90 | | 5/3g=2g-2/3+2 | | 2x5-3-3x=5 | | 7-8x=7(1+7) | | 54+6v=2(8v+7) | | 6x3=15/3=18 | | 3n+11=Q | | x^2-3x-10=2x-10 | | 8(c+3)=10 | | 8x+15=5.50x+50 | | 37-6p=2-(8p-6)-5 |